Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.11

BS

31/03/22

CONTINUOUS INTERNAL EVALUATION - 3

Dept:BS (MAT)		Sub: Calculus and Differential Equations	S Code: 21MAT11
Date: 06-04-22	Time: 9:30-11:00	Max Marks: 40	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q1	N	Questions	Marks	RBT	CO's			
PARTA								
Tennand	a	Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$	6	L2	CO3			
	b	Solve: $(D^2+4)y=x^2+\cos 2x$	7	L2	CO3			
	С	Find the general solution of the equation $(px-y)(py+x)=a^2p$ by reducing into Clairaut's form, taking the substitutions $X=x^2$, $Y=y^2$.	7	L1	CO3			
OR								
2	a	Solve: $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = \sin[2\log(1+x)]$	6	L2	CO3			
	ь	Solve: $(D^2+1)y=\tan x$, using the method of variation of parameters.	7	L3	CO3			
		Solve: $y(\frac{dy}{dx})^2 + (x-y)\frac{dy}{dx} - x = 0$.	7	L2	CO3			

		PART B			
3		Investigate the values of λ and μ such that the system of $x+y+z=6$ equations: $x+2y+3z=10$ $x+2y+\lambda z=\mu$, may have (a) unique solution (b) Infinite solution (c) No solution	6	L	2 CO
en e		Solve the following system of equations by Gauss- $10x+y+z=12$ Seidal method: $x+10y+z=12$ $x+y+10z=12$	7	L2	CO4
	С	Solve by Gauss elimination method: 2x+y+4z=12 4x+11y-z=33 8x-3y+2z=20	7	L2	CO4
		OR			
4	a	Find the rank of the following matrices by elementary row transformations: $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	6	1111	CO4
	ь	Apply Gauss-Jordan method to solve the following $2x_1+x_2+3x_3=1$ system of equations: $4x_1+4x_2+7x_3=1$ $2x_1+5x_2+9x_3=3$	7	L2	CO4
	c	Find the largest eigen value and the corresponding eigen vector of the matrix A, by using the power method by taking initial vector as $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$	7	L3	CO4

Prepared by: Prof. Shreesharanya U R

HOD: Prof. M Ramananda Kamath

Page: 2/2